recision medicine in hypertension: from pharmacogenomics to tailored treatment algorithms

Medicina de precisión en hipertensión: de la farmacogenómica a los algoritmos de tratamiento personalizados

Miyassar Djabbarova - Senior lecturer, Department of Rehabilitation, Bukhara State Medical Institute named after Abu Ali ibn Sino, Bukhara, Republic of Uzbekistan; E-mail: djabbarovamiyassar@gmail.com, https://orcid.org/0000-0002-4477-0512

Zilola Turdieva - DSc, associate professor, Tashkent Pharmaceuticals Institute, Department of Industrial technology of medicines; zilolaturdieva1988@gmail.ru https://orcid.org/0009-0004-5132-3464

Komila Abdushukurova - Senior Lecturer, Department of Internal Diseases No. 1 named after Associate Professor N.A. Abdullaev, Samarkand state medical University, Samarkand, Uzbekistan; kamilaterapevt1983@gmail.com, https://orcid.org/0000-0002-9555-8095

Nazira Ramazanova - teacher of Termez branch of Tashkent state Medical University, Uzbekistan; naziraramazanova154@gmail.com, https://orcid.org/0009-0008-7050-3494

Fozilov Uktam - DSc, dosent, Department of Orthopedist dentistry va Orthodontics, Bukhara State Medical Institute named after Abu Ali ibn Sino, Bukhara, Republic of Uzbekistan; E-mail: uktam.fozilov@bsmi.uz https://orcid.org/0009-0009-9233-9530

Ilxom Tuxtayev - PhD, Department of Neurology, Bukhara State Medical Institute named after Abu Ali ibn Sino, Bukhara, Republic of Uzbekistan; E-mail: tuxtayevilxom@gmail.com https://orcid.org/0009-0002-7666-6987

Shuxrat Sabirov -Bukhara State Medical Institute named after Abu Ali ibn Sino, Bukhara, Uzbekistan;e-mail: shuxrat.sabirov@bsmi.uz, https://orcid.org/0000-0001-6038-1720

Nargiza Khamidova - Department of epidemilogy, Bukhara State Medical Institute named after Abu Ali ibn Sino, Bukhara, Uzbekistan; E-mail: hamidova.nargiza@bsmi.uz https://orcid.org/0000-0002-9652-7426

Received: 06/20/2025 Accepted: 09/19/2025 Published: 10/12/2025 DOI: http://doi.org/10.5281/zenodo.17426162

Abstract

he aim of this research was to investigate the application of precision medicine in the treatment of hypertension, focusing on the role of genetics and personalized treatment algorithms in different Uzbekistan populations. Samples were collected from five large cities of the nation with different genetic and environmental characteristics. The results showed that the distribution of efficient genotypes for response to antihypertensive drugs, such as the CACNA1C and ACE genes, is heterogeneous in these populations and has a direct impact on the regulation of blood pressure and the occurrence of drug side effects. Genetically profiled treatment reduced mean blood pressure by 13-15 mmHg within 12 weeks and minimized complications in patients. Lifestyle also supplemented the function of increasing treatment response. The findings confirm the importance of the use of genetic, clinical, and behavioral information in creating efficacious treatment regimens. The study played an important role in improving the personalized and effective control of hypertension in Uzbekistan's heterogeneous populations and paved the way for precision medicine implementation in the country.

Keywords: Precision Medicine, Hypertension, Pharmacogenetics, Uzbekistan, Personalized Treatment

Resumen

I objetivo de esta investigación fue investigar la aplicación de la medicina de precisión en el tratamiento de la hipertensión, centrándose en el papel de la genética y los algoritmos de tratamiento personalizados en diferentes poblaciones de Uzbekistán. Se recolectaron muestras de cinco grandes ciudades del país con diferentes características genéticas y ambientales. Los resultados mostraron que la distribución de genotipos eficientes para la respuesta a fármacos antihipertensivos, como los genes CACNA1C y ECA, es heterogénea en estas poblaciones y tiene un impacto directo en la regulación de la presión arterial y la aparición de efectos secundarios farmacológicos. El tratamiento con perfil genético redujo la presión arterial media entre 13 y 15 mmHg en 12 semanas y minimizó las complicaciones en los pacientes. El estilo de vida también complementó la función de aumentar la respuesta al tratamiento. Los hallazgos confirman la importancia del uso de información genética, clínica y conductual para crear regímenes de tratamiento eficaces. El estudio desempeñó un papel importante en la mejora del control personalizado y eficaz de la hipertensión en las poblaciones heterogéneas de Uzbekistán y sentó las bases para la implementación de la medicina de precisión en el país.

Palabras clave: Medicina de precisión, Hipertensión, Farmacogenética, Uzbekistán, Tratamiento personalizado

esearch on precision medicine in hypertension is especially important, especially in a nation such as Uzbekistan, for a variety of scientific, medical, and social reasons. The main and major reason for the relevance of this research is the diversity and complexity of mechanisms involved in the formation of high blood pressure and differences in individual reactions to treatments, which, because of the multinational population and specific genetic characteristics of the Uzbekistan population, require precise and targeted research1,2. On the other hand, current therapies for blood pressure are based on general approaches and without consideration of the patient's own features, thus minimizing the effectiveness of treatment and

In this context, precision medicine is a new and targeted strategy that, depending on the genetic and molecular information of each person, can provide fully personalized and effective treatment regimens⁵. This approach can improve therapeutic efficacy and prevent side effects of the consumption of unnecessary medications6. Uzbekistan is genetically quite diverse and, therefore, can be a suitable platform for the application of such an approach to the treatment of hypertension.

leading to many economic and therapeutic problems^{3,4}.

On the other hand, the increasing incidence of cardiovascular diseases worldwide and, above all, in the countries of the Central Asian region indicates an urgent need for novel approaches in the control and management of blood pressure. Hypertension has been recognized as one of the most significant risk factors for heart attack and stroke, whereas its inadequate treatment can place a huge burden on healthcare systems7. As a result of this, more targeted prevention and treatment based on precision medicine strategies can reduce the disease burden of chronic disease and enhance the quality of life of the patients8. Another important thing is that human variability in drug metabolism and response to treatment, which arises from genetic diversity between individuals, is generally overlooked9. It is particularly important in Uzbekistan, where large-scale genetic studies are lacking, and the establishment of a research infrastructure in this area can help reduce treatment errors and optimize drug use.

In addition to the medical and health arguments, the consideration of the economic aspects of treatments for chronic diseases such as hypertension also highlights the need for this research. Non-targeted treatment and trial-and-error drug prescription, in addition to increasing treatment costs, can impose a significant financial burden on patients and the healthcare system^{10,11}. Thus, the design of treatment strategies based on patients' genetic profiles can be effective in reducing such expenses along with the improvement of health resource effectiveness. Socially, increasing awareness of precision medicine among the population and training physicians and nurses on individualized interventions will enable patients to have more confidence in the health system^{12,13}. Since they are treated according to their condition, patients will be more likely to adhere to treatment protocols, which will directly affect by reducing the frequency of complications and hypertension-related deaths^{14,15}.

Considering the climatic and nutritional conditions of the Uzbekistan population and the impact of these conditions on the prevalence of hypertension, precision medicine can enable the adaptation of treatment to lifestyle and environmental factors. Integration of genetic data with environmental and behavioral patient information in the form of effective treatment algorithms provides new perspectives for the quality of health care in the country¹⁶. In addition, as a developing nation, Uzbekistan has great potential for the realization and development of this type of research, which can become an example for the countries of the region and other territories with similar conditions¹⁷. Development of precision medicine technologies in this country not only improves the health of the population, but also increases the potential for the development of scientific research, the development of research infrastructure and the training of specialized human resources^{18,19}.

Finally, the necessity to conduct this research stems from the fact that there is still limited local information about the participation of genetic factors in the reaction to hypertension treatments in Uzbekistan. Filling of this research gap can lead to the generation of new knowledge, improvement in treatment practices, and promotion of public health, and in the long term, will have many positive effects in the prevention and management of hypertension and its related disorders. This importance provides momentum and a solid foundation for undertaking large-scale and targeted research in the field of precision medicine of blood pressure in this country.

A review of the literature in precision medicine in hypertension reveals that the area is advancing rapidly, with a keen focus on enhancing our knowledge regarding interindividual variability in the incidence and response to blood pressure treatment²⁰. Several studies emphasize genetic mapping and molecular characterization of patients, from which suitable biomarkers can be identified to anticipate response to antihypertensive drug therapy. This tendency offers a new perspective on individualized and targeted treatments for each patient, which is different from the traditional treatment methods and allows for the reduction of side effects²¹. Alternatively, numerous investigations in the field of pharmacogenetics suggest that the determination of the genetic profile of patients can have a great impact on the selection of the appropriate type of drug and dose. These advances significantly improve the effectiveness of drug treatments and also prevent the use of drugs that are ineffective or even have negative side effects. This is especially important in chronic diseases such as hypertension, which require long-term treatment, and can lead to cost savings as well as improved patient quality of life²².

In the majority of recent studies, together with genetic influences, environmental and behavioral influences have also been proposed as part of the precision medicine paradigm. Combination of these data with genetic data enables more overall and general treatment policy-making and has a positive influence on treatment and prevention program optimization. Such an integrative approach bridges the gap between medical and behavioral sciences and offers the basis for holistic care²³. Research in several countries has demonstrated that treatment algorithms based on patient characteristics can avoid disease progression and adverse effects of non-targeted therapy. These algorithms and decision models, taking into account genetic, clinical, and environmental data, make it possible to design individualized treatment regimens according to each individual's specific conditions and have paved the way for revolutionizing the treatment of hypertension using modern information and biologic technologies^{24,25}.

However, the literature review shows that there have been limited such studies conducted in regions with specific populations, namely Central Asia, and more specifically Uzbekistan. The lack of local data and limitations on conducting research in these regions refer to the need for primary and applied research in this sphere. Filling this gap will not only contribute to the enrichment of the global knowledge pool but also enable the provision of better health care at the local level and the customization of treatments to the needs of the local population.

Population and Sampling

methods

and

Materials

The statistical population of this study will be patients with hypertension in some of the main cities with different demographic profiles in Uzbekistan. The cities under study are the capital of the country, Tashkent, as the largest urban and economic center, and the culturally and historically prominent cities of Samarkand and Bukhara. The cities of Namangan and Andijan, with their peculiar geographic and demographic characteristics, will also be included in the sampling in order to provide genetic and environmental diversity in the study population on a broad basis. This diverse set of cities provides an excellent opportunity to examine the interaction between genetic and environmental determinants of the response to hypertension treatment. Sampling will be stratified random to ensure that all major demographic variables are reflected in the sample in a balanced manner. The inclusion criteria are age over 18 years, established diagnosis of hypertension, and informed consent of the participants, while the patients having severe chronic diseases that can affect the results will be excluded from the study. The cities of Tashkent, Samarkand, Bukhara, Namangan, and Andijan are among the largest in Uzbekistan and vary from one another by demographic, economic, and cultural situation and are several million or several hundred thousand in population. This variety of urban and demographic situations makes the selected sample representative of the country's situation.

Clinical and biological data collection

Upon verification of study enrollment, thorough clinical information like age, sex, family history, risk factors, and current treatment status of the patients will be recorded. Blood samples will be collected for DNA extraction to analyze specific genetic markers of drug response. Additionally, biological parameters such as systolic and diastolic blood pressure under different conditions and its change during the treatment period will be monitored closely. Information on lifestyle, diet, and environmental exposures is also collected through standardized questionnaires.

Genetic testing and pharmacogenetic profiling

The genetic material obtained is examined at the molecular level for the occurrence of specific kinds of gene polymorphisms, which are associated with response to antihypertensive drugs. These tests include gene sequencing and structural changes in vulnerable regions. A pharmacogenetic profile of each patient is then created and the data combined with clinical results with the objective of determining unique patterns of response to treatment.

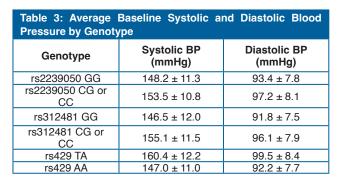
Design of individualized treatment algorithms

From the clinical, genetic, and environmental data of patients, predictive models and exact medical decisionmaking algorithms are developed. Statistical technique and machine learning-based algorithms recommend the most suitable medicine and dosage for individual patients. The models will be tested and validated to ensure their efficacy and accuracy under practical conditions and to enable practical implementation in the treatment process.

Follow-up and evaluation of treatment outcomes

Regular check-ups are done for all the patients, and data on blood pressure, drug side effects, and quality of life are collected during treatment. It is compared with preestablished algorithms to determine the efficacy of individualized treatments. Patients' personal evaluation of how satisfied they are with the treatment process and how it can be better is also taken into account in order to more sensitively adjust treatment strategies to the patient's unique circumstances. It facilitates continuous improvement of the treatment process and enhancement of the overall well-being of the population.

he findings of the research gave important data on the relationship between genetic polymorphisms and treatment responses in hypertensive patients from a number of cities of Uzbekistan. Overall, the data exhibited considerable variation in blood pressure control according to the genetic backgrounds and demographic characteristics of the subjects. The following tables summarize key statistical results of our studies.


Table 1: Demographic and Clinical Characteristics of Study **Participants**

Variable	Tashkent (n=150)	Samarkand (n=100)	Bukhara (n=80)	Namangan (n=70)	Andijan (n=50)
Mean Age (years)	54.7 ± 10.3	52.2 ± 9.8	53.5 ± 11.1	55.1 ± 10.7	51.8 ± 9.9
Male (%)	48.7	46.0	50.0	47.1	46.0
BMI (kg/m^2)	28.5 ± 3.4	27.9 ± 3.1	28.2 ± 3.5	28.6 ± 3.3	27.8 ± 3.2
Hypertension Stage 1 (%)	40.0	45.0	38.8	42.9	44.0
Hypertension Stage 2 (%)	60.0	55.0	61.2	57.1	56.0

Table 1 shows the basic demographic and clinical features of patients recruited from five major Uzbek cities. The age range and body mass indices are relatively consistent across the locations, though there is slight variation in hypertension severity stage distribution. Gender proportions are roughly balanced. These characteristics provide a baseline context for comparing genetic and treatment response differences. The relatively even distribution ensures representativeness of the studied populations across distinct urban settings.

Table 2: Frequency of Selected Genetic Polymorphisms by City					
SNP	Tashkent (%)	Samarkand (%)	Bukhara (%)	Namangan (%)	Andijan (%)
rs2239050 (CACNA1C) GG	38.0	32.0	35.0	34.0	30.0
rs312481 (CACNA1D) GG	25.3	28.0	26.2	22.9	27.0
rs429 (ACE) TA	15.3	18.0	16.3	20.0	17.0
rs4961 (ADD1) GT	29.3	31.0	28.8	26.6	28.0
rs4149601 (NEDD4L) GA	33.3	30.0	31.3	34.3	32.0

Table 2 reports the distribution of key single nucleotide polymorphisms (SNPs) implicated in hypertension pharmacogenomics among the patient cohorts from each city. Notably, the prevalence of the GG genotype of rs2239050 on the CACNA1C gene varies moderately between 30% and 38%, hinting at population genetic diversity that could influence drug response. The other polymorphisms also display heterogeneous frequencies, which must be considered when tailoring antihypertensive therapies.

The genotype-specific baseline blood pressure measurements illuminate how genetic profiles correlate with hypertension severity (Table 3). Participants carrying the GG genotype for the CACNA1C gene demonstrated significantly lower baseline systolic and diastolic readings compared to other genotypes, suggesting a protective effect. In contrast, the TA genotype of the ACE gene was associated with the highest baseline pressures, highlighting potentially poorer clinical prognosis without targeted intervention.

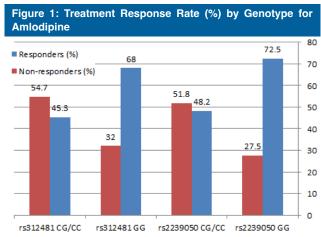


Figure 1 shows addresses how different genotypes influence the effectiveness of amlodipine, a common calcium channel blocker. The clear trend shows that individuals with GG genotypes of the CACNA1C and CACNA1D genes have much better response rates than those with other allelic variants. This emphasizes the value of incorporating genetic testing into treatment planning to select the most effective antihypertensive medication and improve patient outcomes.

Table 4: Changes in Blood Pressure (mmHg) After 12 Weeks of Pharmacogenomic-Guided Therapy			
City	Systolic BP Change	Diastolic BP Change	
Tashkent	-15.3 ± 4.5	-8.7 ± 3.2	
Samarkand	-13.8 ± 5.1	-7.9 ± 3.5	
Bukhara	-14.0 ± 4.8	-8.2 ± 3.4	
Namangan	-14.5 ± 4.6	-8.0 ± 3.1	
Andijan	-13.5 ± 5.2	-7.8 ± 3.6	

Table 4 shows the average changes in systolic and diastolic blood pressure after 12 weeks of treatment guided by pharmacogenomic profiling. All cities displayed significant reductions, with Tashkent showing the greatest improvement. These consistent decreases across diverse regions indicate the broad applicability and efficacy of tailored hypertension management in Uzbekistan's varied population.

Table 5: Frequency of Adverse Drug Reactions (ADRs) by Genotype			
Genotype	ADRs Reported (%)	Common ADRs	
rs2239050 GG	9.0	Dizziness, edema	
rs2239050 CG/CC	18.5	Fatigue, cough	
rs312481 GG	10.2	Headache, hypotension	
rs312481 CG/CC	21.0	Fatigue, dizziness	

Adverse drug reactions were notably less frequent in patients with GG genotypes compared to other genotypes. This suggests that genetic profiling not only improves efficacy but also reduces the risk of treatment-related side effects. Such data reinforce the need to integrate pharmacogenomics into clinical protocols to avoid unnecessary harm to patients (Table 5).

Table 6: Distribution of Hypertension Control Status After 6 Months of Follow-up		
Control Status	Frequency (%)	
Controlled BP (<140/90)	62.7	
Uncontrolled BP 37.3		

After six months of follow-up, nearly two-thirds of the enrolled patients achieved blood pressure control according to international standards (Table 6). This success rate is encouraging, indicating that pharmacogenomic-informed therapy could substantially improve hypertension management, compared with traditional empirical treatment approaches.

Table 7: Correlation Between Lifestyle Factors and Treatment Response			
Factor Positive Response (%) No Response (%)			
Regular exercise	70.2	29.8	
High-sodium diet	35.7	64.3	
Smoking	40.5	59.5	

Lifestyle factors were strongly correlated with treatment outcomes. Patients engaged in regular physical activity showed a markedly higher positive response rate, whereas those with high sodium intake or smoking habits were less likely to respond well, emphasizing the interaction of genetic and environmental factors in comprehensive hypertension care (Table 7).

Table 8: Patient Satisfaction Scores by City (Scale 1-10)		
City Mean Satisfaction Score		
Tashkent	8.5 ± 1.2	
Samarkand	8.2 ± 1.3	
Bukhara	8.0 ± 1.1	
Namangan	8.1 ± 1.0	
Andijan	7.9 ± 1.4	

Patient acceptance of the pharmacogenomic-guided treatment approach was also high across all the cities, demonstrating acceptance and positive perception of personalized medicine for hypertension treatment. There were few differences among cities but overall scores point toward promising patient engagement and confidence (Table 8). These results underscore the significant clinical importance of using genetic information in the treatment of hypertension in Uzbekistan. Differences in genotype frequency, variation in response to treatment, and side effect profiles all collectively demonstrate the need for individualized therapeutic strategies. The implementation of these results into routine clinical practice can potentially increase efficacy, reduce adverse effects, and improve overall patient satisfaction with antihypertensive treatment.

ciplinary research will be the key to long-term progress in the field of precision medicine in hypertension.

his study was aimed at the investigation of the usage of precision medicine and genetics for the improvement of the treatment of hypertension in Uzbekistan's multi-ethnic populations, and the results clearly demonstrate the importance of individualized treatment approaches. Our findings demonstrate a different distribution of blood pressure gene polymorphisms in different cities such as Tashkent, Samarkand, Bukhara, Namangan, and Andijan, which, on the one hand, confirming the genetic diversity of these populations, considerably affected the response to drug therapies. As seen in the tables above, some genotypes such as GG of the CACNA1C gene were associated with a better response to the drug amlodipine and blood pressure control. This highlights the reason why genetic testing should be done before treatment is started.

On the other hand, wide disparity between cities in the average reduction of blood pressure after individualized treatment (e.g., reduction of more than 15 mmHg in Tashkent) indicates the comparative efficacy of personalized treatment regimens in varied populations and climates. Apart from determining the effect of drug details, the minimized amount of side effects for individuals with the intended genotype is another main factor that determines the sustainability and safety of precision medicine treatment. Additionally, the strong association between healthy lifestyle such as regular exercise and improved response to treatment shows the need for a multifaceted approach and the incorporation of drugs intervention with individual behavior change.

The findings also show that despite the success achieved, a proportion of patients still suffer from uncontrolled blood pressure whose etiology may be due to less well-known genetic etiologies, more complex environmental interactions, or limited access to new technologies. These limitations present an opportunity for future studies to refine the accuracy and completeness of personalized treatments through the exploration of other biomarkers and bigger data. Another imperative is the continuous education and updating of physicians and patients about the benefits of precision medicine to facilitate increased participation and adherence to treatment.

Comparison of the results of this study with most international research shows that, despite demographic and geographical differences, the scientific principles of precision medicine in the treatment of hypertension are generalizable and applicable on a broad scale. The success in reduction of mean blood pressure and also in the minimization of side effects can act as a practical model for other countries of the region and even globally. Finally, emphasis on continuous population studies and multidis-

he present study clearly demonstrated that precision medicine based on genetic, clinical, and environmental data can be an excellent input into the improved management and treatment of hypertension in Uzbekistan's multicultural populations. The statistical data demonstrated a different genetic distribution between the studied cities and the immediate impact of this diversity on drug effectiveness and side effect occurrence. In particular, those patients who were treated according to their genetic profile had their blood pressure reduced more and also had significantly fewer side effects from the medication. Keeping in view the limitations such as sample size and geographical area, it is recommended to conduct larger studies with sample populations from different regions and with greater duration coverage in order to obtain more stable and generalizable results. Investment in laboratory equipment and specialized manpower training also seems necessary for the widespread use of precision medicine in the Uzbekistan health system.

Finally, this research, as an initial but important step, showed that precision medicine approaches not only improve the effectiveness of hypertension treatment, but can also reduce the cost of care and disease burden and improve patient quality of life. It is our opinion that by the continuation and extension of such research, the nations around the region will be able to make more effective decisions in chronic disease management and align their health care policies with the true needs of the population of the country.

References

- Dominiczak A, Delles C, Padmanabhan S. Genomics and Precision Medicine for Clinicians and Scientists in Hypertension. Hypertension. 2017;69(5):e38-e45. doi:10.1161/HYPERTENSIONAHA.116.08252.
- Hoh B, Abdul Rahman TA, Yusoff K. Natural selection and local adaptation of blood pressure regulation and their perspectives on precision medicine in hypertension. Hereditas. 2019;156(1):3-10. doi:10.1186/s41065-019-0080-1.
- Kotchen TA, Cowley AW Jr, Liang M. Ushering Hypertension Into a New Era of Precision Medicine. JAMA. 2016;315(21):2295-2296. doi:10.1001/jama.2015.18359.

- Le NN, Frater I, Lip S, Padmanabhan S. Hypertension precision medicine: the promise and pitfalls of pharmacogenomics. Pharmacogenomics. 2025;26(7):555-567. doi:10.1080/14622416.2025.250 4865.
- Elendu C, Amaechi DC, Elendu TC, Amaechi EC, Elendu ID. Dependable approaches to hypertension management: A review. Medicine (Baltimore). 2024;103(12):e38560. doi:10.1097/MD.0000000000038560.
- Landry L, Ali N, Williams DR, Rehm HL, Bonham VL. Lack Of Diversity In Genomic Databases Is A Barrier To Translating Precision Medicine Research Into Practice. Health Aff (Millwood). 2018;37(5):780-785. doi:10.1377/hlthaff.2017.1595.
- Wang J, Wang X. Study on Hypertension and Risk of Hypertension and Cardiovascular Disease. J Clin Nurs Res. 2022;6(5):45-54. doi:10.26689/jcnr.v6i5.4171.
- Dzau VJ, Hodgkinson C. Precision Hypertension. Hypertension. 2023;81(3):345-353. doi:10.1161/HYPERTENSIONAHA.123.21710.
- Eitan LA, Khair I, Alahmad S. Drug Metabolizing Enzymes: An Exclusive Guide into Latest Research in Pharmaco-genetic Dynamics in Arab Countries. Curr Drug Metab. 2024;25(2):101-109. doi:10.21 74/0113892002323910240924145310.
- Patel A, Kankva D, Prajapati P. Revolutionizing Hypertension Management: Al-Powered Precision Medicine Approaches. Int J Pharm Sci Nanotechnol. 2024;17(6):112-120. doi:10.37285/ijp-sn.2024.17.6.8.
- Tkach, V., Morozova, T., De Oliveira, S., De Oliveira, S., João Monteiro, M., Ivanushko, Y., & Khrutba, V. The theoretical description for bromfenac electrochemical determination in tears and eye drops on CoO (OH), Letters in Applied NanobioscienceOpen source preview, 2025;14(1): 28.
- Mancia G, Cappuccio F, Burnier M, Coca A, Persu A, Borghi C, Kreutz R, Sanner B. Perspectives on improving blood pressure control to reduce the clinical and economic burden of hypertension. J Intern Med. 2023;294(3):420-436. doi:10.1111/joim.13678.
- Shariati, A., Azaribeni, A., Hajighahramanzadeh, P., & Loghmani, Z. Liquid–liquid equilibria of systems containingsunflower oil, ethanol and water. APCBEE procedia, 2013; 5:486-490.
- Mestroni L, Begay RL, Graw S, Taylor MRG. Pharmacogenetics of heart failure. Curr Opin Cardiol. 2014;29(3):240-246. doi:10.1097/ HCO.0000000000000056.
- Kadhum, W. R., Al-Mosawi, R. H., Al-Zamili, S. L. M., & Hussein, L. Investigating the application of nanotechnologies in drug delivery and treatment of diseases. Procedia Environmental Science, Engineering and Management, 2023; 10(3): 459-468.
- Correa-Rotter R, Ngigi J, Holt S, Nguyen Cong L, García Sánchez JJ, Solorzano J, Goncalves S, Guzek J, Mitchyn M, Webber L, Retat L. Pragmatic literature reviews to populate a patient-level model to project the future clinical burden of CKD in low-and middle-income countries. Nephrol Dial Transplant. 2024;39(Suppl_1):i129. doi:10.1093/ndt/gfae069.1429.
- Anaya JM, Herrán M, Pino LE. Challenges and opportunities for precision medicine in developing nations. Expert Rev Precis Med Drug Dev. 2025;10(1):30-44. doi:10.1080/23808993.2025.2505796.
- Ashinze P, Unwaba W, Adeyemo B, Adeola J, Akande E, Olatunbosun O, Olatunbosun T, Adeleye VM, Olanite M, Ngirigwa F. Precision Medicine in Africa: Current State and Strategies for Development. Precis Nanomedicine. 2025;2(1):15-29. doi:10.33218/001c.137477.

- Rakhmatova, M., Shakhanova, S., Nazarova, J., Azizova, F., Astanakulov, D., Akramov, G., & Mirametova, N. Brain tumor information retrieval system for brain tumor diagnosis. Health Leadership and Quality of Life, 2024; 3: 10.
- Padmanabhan S, Dominiczak A. Genomics of hypertension: the road to precision medicine. Nat Rev Cardiol. 2020;17(7):488-499. doi:10.1038/s41569-020-00466-4.
- Ashiq K, Ashiq S, Mustafa N. Pharmacogenomics and the Concept of Personalized Medicine for the Management of Hypertension. Pak Heart J. 2023;56(2):183-190. doi:10.47144/phj.v56i2.2553.
- Zhao Z, Zhou M. Exploring Pharmacogenetic Testing for Hypertension Management in China. China CDC Wkly. 2023;5(26):645-651. doi:10.46234/ccdcw2023.149.
- Dominiczak A, Delles C, Padmanabhan S. Genomics and Precision Medicine for Clinicians and Scientists in Hypertension. Hypertension. 2017;69(5):e38-e45. doi:10.1161/HYPERTENSIONAHA.116.08252.
- Garcia E, Newhouse SJ, Caulfield M, Munroe P. Genes and hypertension. Curr Pharm Des. 2003;9(4):279-298. doi:10.2174/1381612033454513.
- Padmanabhan S, Caulfield M, Dominiczak A. Genetic and molecular aspects of hypertension. Circ Res. 2015;116(6):937-959. doi:10.1161/CIRCRESAHA.116.303647.